Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding

Yue Meng1†, Peter J. Eng5, John S. Tse6, Dawn M. Shaw6, Michael Y. Hu1, Jinfu Shu1, Stephen A. Gramsch1, Chichang Kao1†, Russell J. Hemley1, and Ho-kwang Mao1†

1High-Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439; 2Consortium for Advanced Radiation Source, University of Chicago, 9700 South Cass Avenue, Argonne, IL 60439; 3Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2; 4Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, DC 20015; and 5National Synchrotron Light Source, Brookhaven National Laboratory, P. O. Box 5000, Upton, NY 11973

Contributed by Russell J. Hemley, June 10, 2008 (sent for review February 12, 2008)

The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O₂ molecules interact predominantly through the half-filled 1πₓ orbital at 10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1πₜ orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O₂ molecules at the transition to the ε-phase. The ε-phase, which consists of (O₂)₄ clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O₂)₄ clusters develop upon compression of the ε-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.

Marked changes in π* and σ* spectral features with compression are revealed through analysis of the high-pressure IXS spectra as shown in Figs. 2 and 3. These changes clearly define regions of the low-pressure phases and the ε-phase as a result of differences in the variation of transition energies with pressure. An important result is the distinctly different behavior of the π* and σ* transition energies in low-pressure phases (Fig. 2). Compared with that observed in gas-phase O₂, the σ* energy displays a noticeable increase of 0.9 eV in the dense fluid phase, followed by a continuous increase with further compression to just below 10 GPa. This behavior is in clear contrast to the π* energy, which remains constant in this pressure range. At 10 GPa, corresponding to the transition to the ε-phase (6), there is a discontinuous shift of the π* transition to a higher energy by ~1.1 eV. For the ε-phase between 10 and 38 GPa, both π* and σ* transition energies increase slightly with pressure. Along with the variation in transition energy, the relative intensity of the π* feature (Fig. 3), determined from the ratio of the area under the π* peak to the total signal from 525 eV to 555 eV, shows a considerable decrease with pressure in the low-pressure phases.

The authors declare no conflict of interest.

1To whom correspondence may be addressed. E-mail: ymeng@hpcat.aps.anl.gov or r.hemley@gl.cw.edu.

© 2008 by The National Academy of Sciences of the USA

PNAS August 19, 2008 | vol. 105 | no. 33 | 11640–11644
The ϵ-phase is distinguished by a significantly reduced variation of intensity with pressure. These observations indicate pressure-induced changes in the intermolecular interactions between O$_2$ molecules. The continuous variation in the transition energy and intensity $<$10 GPa shows that these low-pressure phases possess similar bonding characteristics; the ϵ-phase, on the other hand, represents a distinctive change in bonding nature.

The π^* and σ^* features in a K-edge spectrum arise from resonant scattering of the excited 1s photoelectron between atoms within an O$_2$ molecule. As a result, their energies should similarly depend on the intramolecular bond length (22, 23). The σ^* energy has been found to be inversely proportional to the bond length of molecular oxygen chemisorbed on metal surfaces at low temperatures (24); similar correlations have also been observed in chemisorbed molecules with C–O bonds (22) and for the C–C bonds of gas-phase hydrocarbons (25). Gaussian-type-orbital calculations in the local density approximation have shown that the $3\sigma^*$ orbital in O$_2$ moves to a higher energy as the molecule is confined into a smaller volume in solid O$_2$ films (20).

The π^* energy, on the other hand, displays a complex behavior that has been attributed to molecular interactions through the π^* orbital of the molecules (19, 22, 23).

When the σ^* energies of the condensed phases of oxygen are plotted as a function of volume by using an available equation of state data for the solid phases (1–3, 5) with volumes for the fluid phase estimated by extrapolating those of the β-phase, we find that the observed σ^* transition energy indeed does increase with decreasing volume (Fig. 2 Inset), in a manner similar to those previously observed in chemisorbed molecules and gas-phase hydrocarbon molecules and as predicted theoretically for solid O$_2$ films. Although there is some scatter in the region of the ϵ-phase, the overall variation can be largely accounted for by the volume change, providing evidence that the transition in the σ^* transition energy is a consequence of the expected volume reduction under pressure. The decreased variation in the σ^* transition energy $>$10 GPa is consistent with the low compressibility of the ϵ-phase as determined by x-ray diffraction (3, 5).

The contrasting behavior of the π^* and σ^* transition energies indicates the involvement of the 1π_2^* molecular orbitals on adjacent O$_2$ molecules, an interaction which evolves as oxygen undergoes phase transitions at high pressure. Because the effective volume per O$_2$ molecule from 2.3 to 9.6 GPa is \sim20–37% smaller than that of an O$_2$ molecule in the gas phase (26), the overlap between half-filled antibonding 1π_2^* orbitals on adjacent O$_2$ molecules increases dramatically in the dense fluid and solid phases. With the presence of unpaired electron spins in the 1π_2^* orbital, such a reduced volume and the consequent orbital overlap inevitably lead to increased interactions between neighboring molecules. In fact, such an interaction mechanism for O$_2$ molecules was proposed by...
Pauling (27) to explain the disappearance of magnetism in low-temperature solutions of liquid oxygen at ambient pressure.

Previous experimental and theoretical studies have established that molecular interactions through the 1\pi^* orbital lead to changes in electron occupation of the orbital and/or to its delocalization, which consequently affects the spectral characteristics of the \pi^* transition (22–24, 28, 29). Orbital delocalization results in the distribution of oscillator strength over a wider energy range, thereby reducing the energy and broadening the spectral feature (28–30). A reduction in energy and intensity of the \pi^* peak has been observed in chemisorbed CO and is correlated to the delocalization of the orbital (29).

Based on these previous findings, we interpret the observed substantial decrease in the relative intensity of the \pi^* transition <10 GPa (Fig. 3), accompanied by peak broadening (Fig. 3 Inset), as resulting from a gradual delocalization of the 1\pi^* orbital, due to increased intermolecular interactions as \text{O}_2 molecules are brought closer together upon compression. The enhanced orbital delocalization with pressure is consistent with the constant \pi^* transition energy observed in this region. We point out that the decrease in \pi^* energy due to the orbital delocalization should cancel the effect of the pressure-induced volume reduction that would move the \pi^* transition to higher energies (23), resulting in a relatively constant energy for the transition with increasing pressure.

The discontinuous shift of the \pi^* transition to a higher energy at 10 GPa (Fig. 2B) is evidence for the formation of intermolecular bonding brought about by the enhanced 1\pi^* orbital interaction between neighboring \text{O}_2 molecules at low pressures. The fact that \pi^*–\pi^* interactions of constituent molecules lead to the formation of delocalized orbitals of a molecular cluster is well known in organic chemistry (31, 32). Furthermore, correlating the observed shift in \pi^* transition energy with the development of intermolecular bonding is also consistent with a recently proposed molecular orbital scheme for the \text{O}_2_4 unit in the \text{e}-structure (33), in which the eight degenerate 1\pi^* orbitals from four \text{O}_2 molecules form bonding and antibonding orbitals of the molecular cluster. A schematic orbital energy-level diagram illustrating the essential features of this model is shown in Fig. 4A. Each of the 1\pi^* molecular orbitals of an \text{O}_2 molecule interacts in a \pi fashion with a 1\pi^* orbital on one adjacent \text{O}_2 molecule, and in \delta-fasion with a 1\pi^* orbital on a different \text{O}_2 molecule (Fig. 4B) to create the bonding and antibonding levels of the \text{O}_2_4 cluster. Tracing the evolution of the formation of this cluster through an \text{O}_2_2 dimer unit to the observed \text{O}_2_4, it is clear that the formation of the eight-atom cluster offers a dramatic increase in the HOMO–LUMO gap over that of the dimer as well as a significant increase in the energy of the \pi^* transition upon formation of the \text{O}_2_4 cluster and provides a rationale for the stability of the cluster over the dimer. A similar change in the \pi^* transition energy with a formation of intermolecular bonding through the 1\pi^* orbital of \text{O}_2 has also been reported (19) for chemisorbed \text{O}_2 on Pt (111) at low temperatures, in which the \pi^* transition energy corresponding to the bonding direction is shifted to a higher energy while that in the nonbonded direction remains unchanged. In an arrangement of \text{O}_2 molecules aligned with the molecular axes parallel in layered structures of the solid oxygen phases, the observed intermolecular interaction and bonding through 1\pi^* orbital suggests that the intermolecular bonding in \text{O}_2_4 is directional and perpendicular to the intramolecular axis of \text{O}_2. The K-edge spectral features of the \text{e}-phase at high pressure also yield information about the nature of its bonding. In contrast to the low-pressure phases, which are characterized by the distinctly different behavior of the \pi^* and \sigma^* transition energies due to the open-shell interactions of 1\pi^* orbitals, the \text{e}-phase displays similarly increasing variations of both energies with pressure (Fig. 2). This observation suggests a closed-shell character for the molecular interactions, in agreement with recent theoretical studies (33, 34).

The evolution of the interactions in the \text{e}-phase with pressure is further elucidated by theoretical calculations. Fig. 5 shows the
calculated oxygen XAS K-edges of the \(e\)-phase at selected pressures from 10 to 47 GPa, with the corresponding excited \(e\)-state orbitals plotted in Fig. 6. The spectral features and the qualitative trends of the intensity and energy variations agree reasonably well with the experiment. The calculation also reproduces the appearance of a broad feature at high energies \(\sim 550\) eV as pressure is further increased in the \(e\)-phase (K-edge at 34 GPa in Fig. 1). The intercluster interaction in the \(e\)-phase through the \(\pi^*\) orbital is revealed by comparing the K-edges of the solid \(e\)-phase and an isolated \((\text{O}_2)_4\) cluster (Fig. 7). The reduced \(\pi^*\) intensity in the \(e\)-phase as compared with that in the isolated cluster indicates that this orbital in the \(e\)-phase is more delocalized as a result of interactions between neighboring clusters. With further compression of the \(e\)-phase, the orbital delocalization increases, as evidenced by the observed continuous decrease in the relative \(\pi^*\) intensity; this conclusion is supported by the theoretical calculations (Figs. 5 and 6). Fig. 6 illustrates that the excited state is delocalized beyond a single \((\text{O}_2)_4\) cluster at 17 GPa, and the extent of this delocalization is increased at 47 GPa. These results suggest an increase in intercluster interactions with pressure in the \(e\)-phase. The enhanced role of the \(\sigma^*\) orbital in the high-pressure region of the \(e\)-phase is further demonstrated by the appearance the broad feature at \(\sim 550\) eV, assigned to an admixture of the \(\pi^*\) orbital and the \(\sigma^*\)-like continuum state. The increased intercluster interaction in the \(e\)-phase is not surprising. Previous x-ray diffraction measurements (3) indicate a marked decrease in intercluster distance; at 47 GPa, the distance between neighboring clusters is comparable with the distance between \(\text{O}_2\) molecules within the cluster at 10 GPa. Such an intercluster interaction provides a possible mechanism for the formation of bonding between adjacent clusters in the \(\zeta\)-phase of oxygen and the onset of metallization at still higher pressure (10).

Materials and Methods

High-purity oxygen (99.999%) was cryogenically loaded into a sample chamber in an x-ray transparent beryllium gasket compressed in a panoramic diamond anvil cell (DAC). To prevent potential contamination, sample loading was conducted in a controlled environment. Before gas \(\text{O}_2\) was cryogenically liquidized for loading, air was removed from the loading chamber by replicating steps of vacuum pumping and \(\text{O}_2\) gas purging. The purity of the loaded samples was confirmed by optical spectroscopy.

Oxygen K-edge spectra were collected at high pressures by using the inelastic x-ray scattering (IXS) technique at beamlines 16ID-D (HPCAT) and 13ID-C (GSECARS) of the Advanced Photon Source. The two facilities have nearly identical IXS setups and use essentially the same major components for the collection of IXS data. By using a pair of meter-long KB mirrors, monochromatic x-rays from an undulator source were focused to a spot of area 50 \(\mu\)m \(\times\) 15 \(\mu\)m at the sample position. With the DAC mounted on the rotation center of the IXS spectrometer, we collected oxygen K-edge spectra by scanning the incident beam energy from 525 to 565 eV above the analyzer elastic scattering energy of 9.6856 keV. The scattered x-rays were collected with a six-element Si (660) analyzer positioned at 870 mm from the sample at a 2-\(\theta\) angle of 18°, and the intensity at the elastic energy reflected by the analyzer crystals was recorded in a near back-scattering (Bragg angle of 89°) geometry by using an AMPTEK Si detector. The analyzer elastic energy was determined after each experiment setup and the system reliability verified by using the K-edges of standard graphic phases of carbon and boron nitride. Energies of K-edge spectral features, presented by energy loss (incident photon energy – analyzer elastic energy), are not affected by standard uncertainties in absolute energy calibration. To increase the signal to background ratio, a postsample slit at the 2-\(\theta\) angle was used to discriminate the signal along the beam direction. Pressures were calibrated by the ruby luminescence method before and after each IXS measurement.

Theoretical O K-edge x-ray absorption spectra (XAS) of the \(e\)-phase at high pressures were calculated by using the CPMD code (35) with a supercell model consisting of 216 atoms constructed with atomic positions derived from the corresponding fully optimized structure at each pressure by using the PWSCF code (36). The Troullier–Martins norm-conserving pseudopotential for the O atom (37) and valence orbitals by a plane wave basis with an energy cutoff of 90 Ry. Only the \(\Gamma\)-point is used for energy sampling. A partially screened half-core hole (38, 39) with half of an electron removed from the 1s core level was used to mimic the ionized O atom. This transition-state model, in principle, takes into account the relaxation effect up to second order in the transition energy. Wave functions of empty orbitals from the transition-state potential, which had been shown to yield reliable oscillator strengths for core-level absorption spectra (40), were used to approximate the final state in the calculation of the K-edge XAS spectra. Oscillator strengths were obtained from the projection of the core wave function to the O 2p projected density of states. This approach has been shown to produce results in reasonable agreement with the experiment (39, 41, 42). Two thousand electronic states, including occupied orbitals, were generated for the calculation, yielding electronic excitations up to 577 eV. Trial calculations using a larger supercell with 512 atoms and 3,000 electronic states show no quantitative change in the calculated XAS profile.

ACKNOWLEDGMENTS. We thank S. K. Lee, B. Mitilter, and J. B. Neaton for reviewing the manuscript; G. Cody and R. E. Cohen for comments and suggestions; and M. Phillips for coordinating manuscript communications. GeoSoilEnviro Consortium for Advanced Radiation Sources (GSECARS) is supported by Department of Energy (DOE)—Basic Energy Sciences (BES)—Geosciences, National Science Foundation (NSF)—Division of Earth Sciences (EAR), and the State of Illinois. The High-Pressure Collaborative Access Team facility is supported by DOE–BES, DOE–Office of Nuclear and National Security Information (Carnegie DOE Alliance Center), NSF, Department of Defense–Tactical Army Command, and the W. M. Keck Foundation.