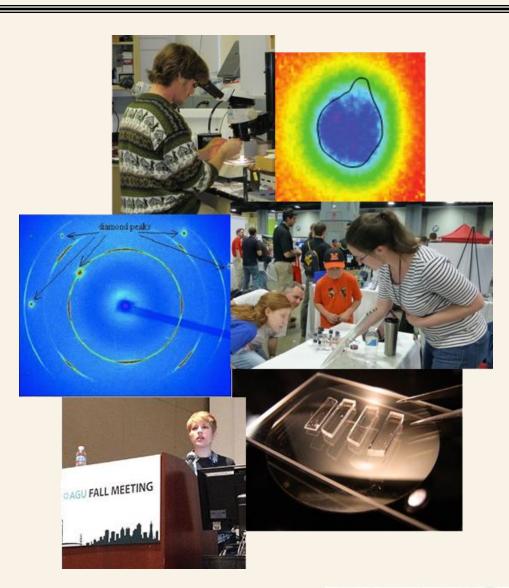


CARNEGIE / DOE ALLIANCE CENTER: A Center of Excellence for High Pressure Science and Technology

Russell J. Hemley

SSAP Symposium February 17-18, 2016

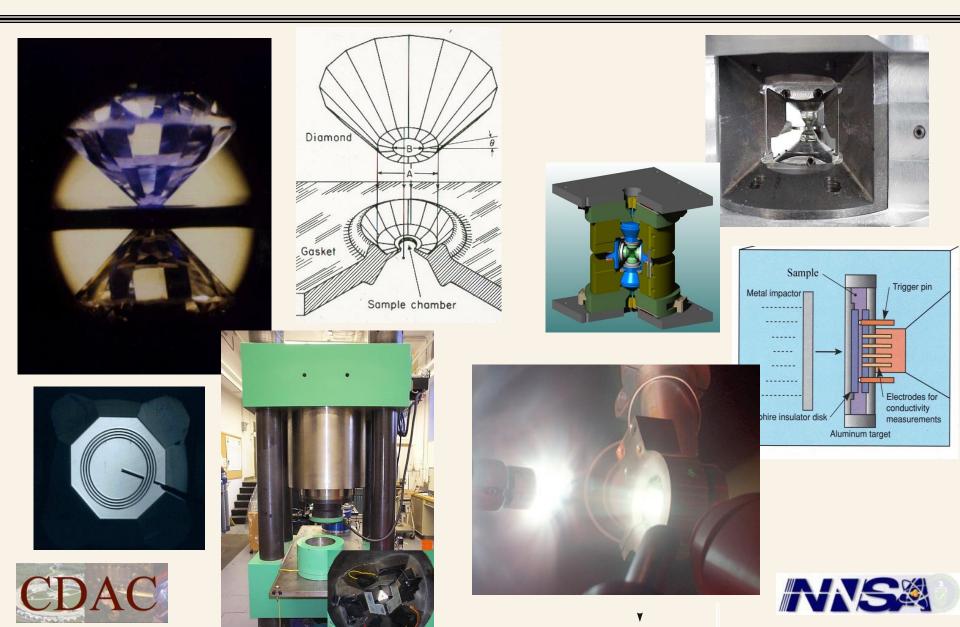
OUTLINE

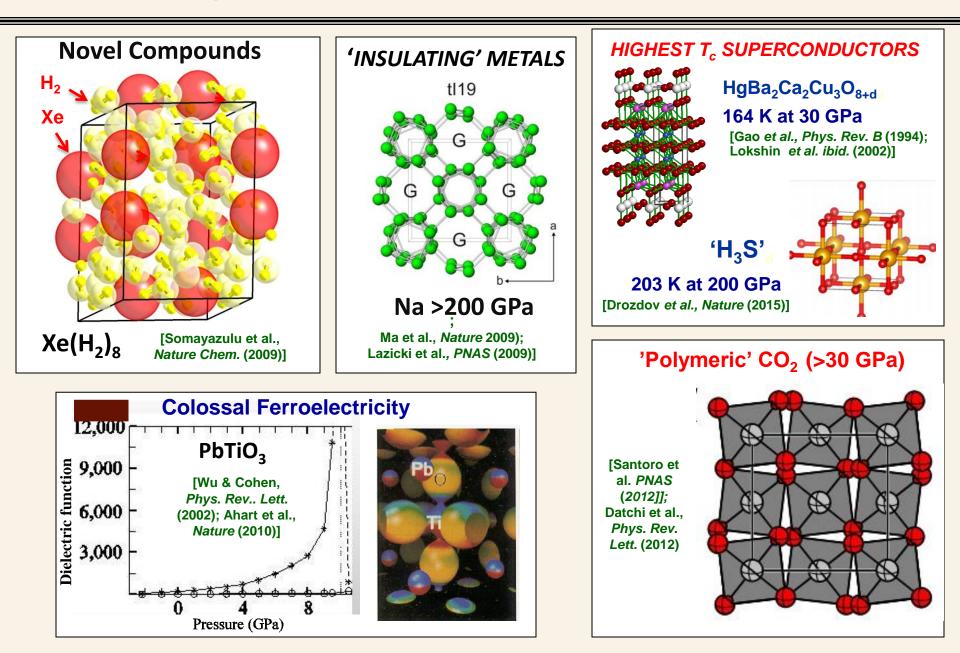

1. Overview

MOTIVATION, CENTER STRUCTURE, PERSONNEL

- 2. Training EDUCATION, OUTREACH RESEARCH TRAINING
- 3. Selected Science

STUDENT AND NNSA LAB PROJECTS

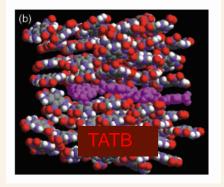

4. Outlook OPPORTUNITIES

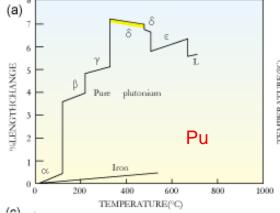


New tools have opened a new world on 1. OVERVIEW materials behavior under extreme *P-T* conditions

1. OVERVIEW

Novel High-Pressure Materials

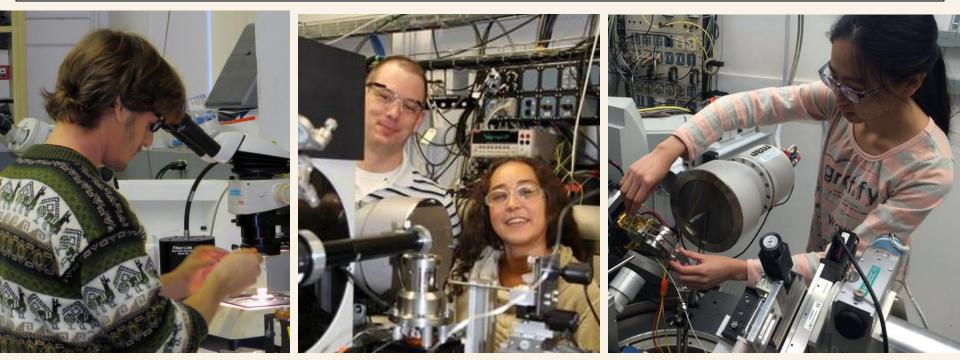



Center Goals

Mission

Develop techniques and training to examine the full complement of high *P-T* materials problems essential for stewardship science

Fiscal Year 2016 Stockpile Stewardship and Management Plan


Report to Congress March 2015

> National Nuclear Security Administration United States Department of Energy Washington, DC 20585

Center Goals

Mission

Develop techniques and training to examine the full complement of high *P-T* materials problems essential for stewardship science

Train the next generation

1. OVERVIEW

Components of the Center

Academic Partners

CARNEGIE INST. (Hemley) CALTECH (Fultz) GEORGETOWN (Ichiye) NORTHWESTERN UNIV. (Jacobsen) UCLA (Kavner) **UNIV. ALABAMA – BIRMINGHAM** (Vohra) **UNIV. at BUFFALO (Zurek)** UNIV. CALIF. – BERKELEY (Wenk & Jeanloz) UNIV. HAWAI'I (Dera) **UNIV. ILLINOIS (Dlott & Cahill)** UNIV. UTAH (Miyagi) WASHINGTON UNIV. (Schilling) WASHINGTON STATE UNIV. (Yoo) YALE UNIV. (Lee)

Academic Collaborators FACILITY USERS

NNSA Laboratory Partners

ALL HIGH *P-T*GROUPS AT LLNL, LANL, SNL; STEERING/ADVISORY COMMITTEE MEMBERS

CDAC manages and coordinates 1. OVERVIEW activities at major facilities for high *P-T* research

Carnegie facilities

High P-T technology Spectroscopy labs Diffraction and microanalysis Computational resources CVD diamond/materials growth Sample preparation (beamlines e.g., gas loadings ~50/yr)

CDAC Headquarters

Steve Gramsch Coordinator/ Research Scientist

Morgan Phillips Administrator

Ivan Naumov

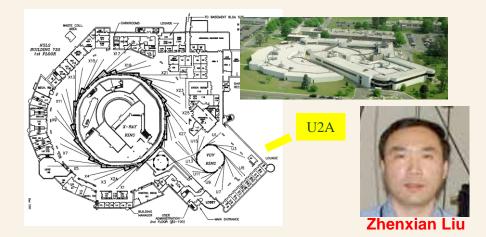
Theory and

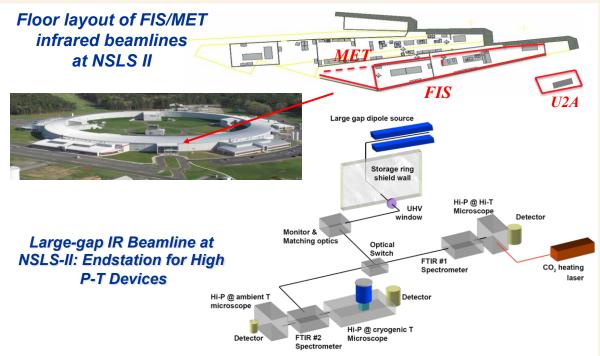
Computation

Maddury Somayazulu Senior Lab Manager/ General high pressure

Muhtar Ahart Ferroelectrics, Polymeric Materials

- Manage facilities
- Student mentoring
- Visitor training
- Technique development


Chang-sheng Zha Hydrogen/ Molecular Systems



Kadek Hemawan CVD, Synthesis

CDAC manages and coordinates 1. OVERVIEW activities at major facilities for high *P-T* research

- High *P-T* synchrotron IR beamline at BNL (NSL-U2A)
- Major component of CDAC
- Academic and NNSA Lab users (e.g., LANL and SNL)

NEW NSLS-II IR BEAMLINE

- Frontier Infrared Spectroscopy (FIS) beamline to be built
- Improved perform. (stability, far-IR)
- New opportunity for NNSA Labs and SSAP

Dedicated high *P-T* facilities at the Advanced Photon Source

at the Advanced Photon Source

1. OVERVIEW

ALGORET AUGUST A

- HPCAT (Sector 16) launched
- in 1998

HPCAT

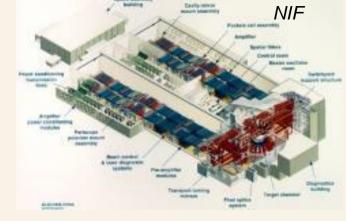
Dedicated high-pressure facility

HIGH PRESSURE COLLABORATIVE ACCESS TEAM

- Physics, chemistry, materials
- Advanced techniques
- Programmatic work (NNSA Labs)
- >6100 person visits
- >950 peer reviewed publications
- Training and education
 - More than 60% users are students and post-docs
- Enhanced capabilities
- 2012 Trilab (LLNL, LANL, SNL)
- Upgrades of APS and HPCAT


Guoyin Shen HPCAT Director

- 9 hutches
- 4 independently operating stations
- support laboratories


DOE NNSA/SC Partnership

CDAC supports research activities at major DOE facilities

- Technique development/support for NNSA Lab facilities
- CDAC co-leads two NIF Discovery Science Campaigns

1. Hydrogen 'PPT' Fluid Transition

1. OVERVIEW

Fe Melting

 10-20 Mbar
 in 'habitable'
 exoplanets

CDAC HIGHLIGHTS 2015-2016:

2. TRAINING

Education, training and outreach

- Supported 19 PhD students 17 PhDs awarded
- 52 total PhDs awarded with CDAC support
- 4 early career scientists join DOE/NNSA labs/HQ
 - Jeffrey Montgomery (UAB) & Suzanne Ali (UC Berkeley) to LLNL
 - Maneeshika Madduri (Stanford, Carnegie Intern) to SNL Staff
 - Caitlin Murphy (Carnegie) joined DOE HQ
 - Two postdocs offered positions (turned down)
- 10 undergraduate/high school interns (2 yrs)
- CDAC/HPCAT/Lab collaborations
 - 680+ collaborators/coauthors from 170+ institutions
- Presentations at major national meetings
 - AGU Fall 2015: 32 abstracts
 - APS March 2015: 20 abstracts
- Partner Awards
 - Dana Dlott (Lippincott); Brent Fultz (Hume-Rothery);
 David Cahill (Touloukian); James Schilling (AIRAPT VP)

Jeffrey Montgomery (LLNL)

Maneeshika Madduri (SNL)

Caitlin Murphy (DOE HQ)

2. TRAINING

CDAC Annual Meeting / NNSA Review

December 8-9, 2015

- 21 Student Posters
- 9 Academic Partners
- 2 National Lab Partners
- Program Overview
- HPCAT Overview

2. TRAINING

Educational Enrichment at NNSA Labs

Andrew Shamp University at Buffalo

LLNL

Quantum Simulations Summer 2014 E. Schwegler, S. Hamel, T. Ogitsu Theoretical Studies of the Primary Hugoniot of Boron Carbide in Extreme Conditions

John Lazarz Northwestern University

LANL

Shock and Detonation Physics Fall 2014 + September 2015 - Present K. Ramos, C. Bolme *Measurement of Elasticity at Extreme Conditions*

Eloisa Zepeda-Alarcón University of California-Berkeley

LANL

Materials Science in Radiation and Dynamics Extremes Summer 2014 R. Lebensohn, C. Tomé *Modeling Two-Phase Deformation in Polycrystalline Aggregates Relevant to the Lower Mantle*

Summer Interns at Carnegie

Keenan Brownsberger

Whitworth University Synthesis of Palladium Hydrides at High Pressure APS March Meeting 2016

Reed Mershon University of Chicago The Role of Oxygen Fugacity in Elemental Fractionation Between Basaltic and Sulfidic Liquids AGU December 2015

Anne Davis

California Institute of Technology

Phase Transitions in Silicon Quantum Dots for Solar Energy Conversion MRS November 2015

A broad range of fundamental problems in high *P-T* science is being investigated

- STRUCTURES AND PHASE RELATIONS
- EQUATIONS OF STATE
- ELASTICITY, RHEOLOGY, STRENGTH
- ELECTRON AND PHONON DYNAMICS
- TRANSPORT PROPERTIES
- EXTREME CONDITIONS CHEMISTRY

DIVERSE
MATERIALS
Molecules
MOIECUIES
Metals
Low-Z gases

Low-Z gases High explosives Polymers Composites

3. SCIENCE

A broad range of fundamental problems in high *P-T* science is being investigated

- STRUCTURES AND PHASE RELATIONS
- EQUATIONS OF STATE
- ELASTICITY, RHEOLOGY, STRENGTH
- ELECTRON AND PHONON DYNAMICS
- TRANSPORT PROPERTIES
- EXTREME CONDITIONS CHEMISTRY

DIVERSE MATERIALS Molecules Metals Low-Z gases High explosives Polymers

3. SCIENCE

Composites

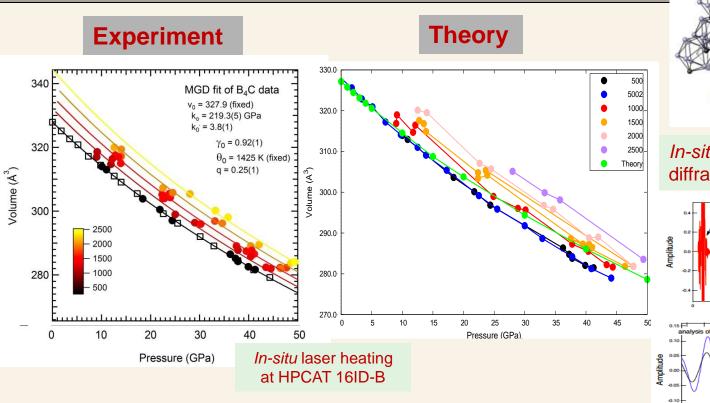
2015-2016: 156 Publications (including in press) - 24 Student papers (18 Student First Author Papers)

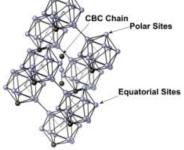
Since 2003: 1635+ Publications

(224+ Student Publications – 145+ Student First Author Papers) - 95 Phys. Rev. Lett., 73 Nature, 25 Science, 75 PNAS

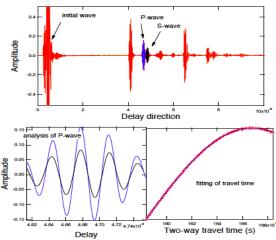
CDAC HIGHLIGHTS 2015-2016:

Student / Postdoc Presentations


Will Bassett (UIUC) - 32-Channel Emission Spectrometer for Studies of Energetic Materials Kierstin Daviau (Yale) - Inside a Diamond Planet: Dissociation of SiC at High P-T **17 posters Sakun Duwal (WSU)** - Isostructural Transition and Metallization in WS₂ at this Yi Hu (Hawai'i) – Five-Coordinated Silicon in Diopside at High Pressure by Single-Crystal X-ray Diffraction and First Principles Calculations. meeting May-Ling Li (UIUC) – Thermal Conductivity of Anisotropic Materials at High Pressure Feng Lin (Utah) – Elastic Visco-Plastic Self-Consistent Analysis of Periclase Deformation **Chris McGuire (UCLA)** - Fe₅Si₃ : High Pressure and High Temperature Equation of State up to 90 GPa from Diamond Anvil Cell Experiments Samuel Moore (UAB) - Fabrication of Designer Diamond Anvils Using Maskless Lithography with Integrated Wireless Data Transmission Raul Palomares (Tennessee) - Controlling the Stability of Octahedral GeO₂ Glass Using in situ Ion Irradiation at High Pressure Andrew Shamp (Buffalo) - Theoretical Studies of the Primary Hugoniot and Solid State Properties of Boron Carbide in Extreme Conditions Will Shaw (UIUC) - Shock Wave Energy Dissipation of Nanoporous Materials Hannah Shelton (Hawai'i) - Evolution of Interatomic and Intermolecular Interactions of Melamine at Pressure Spencer Smith (UAB) - High Pressure and High Temperature Structural Behavior of the Organic Crystal Paracetamol Jing Song (WUStL) - Magnetic Ordering at Anomalously High Temperatures in Nd and Dy under Pressure Josh Townsend (Northwestern) - First-Principles Investigation of Hydrous Post-Perovskite Eloisa Zepeda-Alarcon (Berkeley) – Modeling Two-Phase Deformation in Polycrystalline Aggregates Relevant to the Lower Mantle


3. SCIENCE

Jocelyn Rodgers (Carnegie) – Proteins Under Extreme Pressures – A Computational Study


P-V-T EOS and strength measurements in B₄C and B₄C-Si mixtures

3. SCIENCE

In-situ ultrasonic and x-ray diffraction at HPCAT 16BM-D

Ultrasonic measurements of B_4C sample at 3 GPa and 1073 K. Upper panel shows the whole spectrum. Lower panel shows the analyzed P-wave and that allow us to obtain accurate velocity

Andrew Shamp

Eva Zurek

M. Somayazulu

Muhtar Ahart

Buffalo-HPCAT-LLNL-Carnegie

3. SCIENCE

New developments in CVD diamond

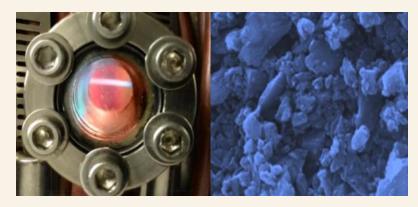
1. Growing diamond at atmospheric pressure

- New micro-wave plasma CVD methods
- Increasing pressure enhance diamond growth rates
- 2. Metastable growth of other materials
 - Other materials in kinetically stabilized states such as Si
- 3. N-V centers in nanodiamonds

Derek Keefer (Penn State)

Todd Zapata (TAMU)

Huiyang Gou



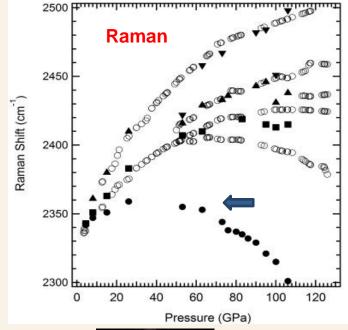
Kadek Hemawan

PSU-TAMU-Carnegie

Single-crystal diamond grown at <200 torr [K. Hemawan *et al.*, JVST A 33, 061302 (2015)]

Polycrystalline diamond produced by atmospheric pressure CVD

[K. Hemawan *et al.*, *Appl. Phys. Lett.* 107, 181901 (2015)]


LANL collaboration: Novel behavior of molecular mixtures

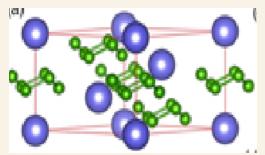
Hydrazine-H₂ and hydrazine-N₂ Xe-N₂

Hydrazine compression observe phase transitions at 12 GPa and 35 GPa and at 300 K.

Observe a new phase at 8 GPa in hydrazine- H_2 characterized by a very large unit cell.

vdW compound $Xe(N_2)_4$ forms at 2.5 GPa and is stable to 120 GPa.

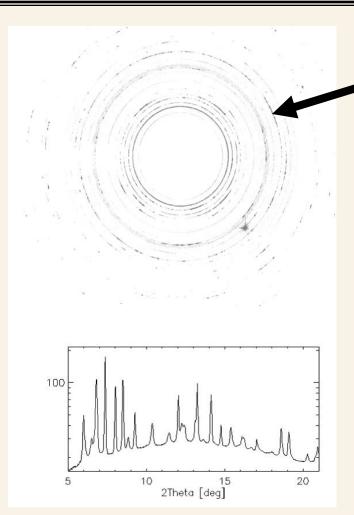
Dana Dattlebaum


M. Somayazulu

LANL-Carnegie

Xe(N₂)₄

3. SCIENCE


[Ping et. al, arXiv]

Raman and IR spectra obtained from laser heated sample at 120 GPa shows a mixture of N_2 and a new Xe- N_2 compound that displays 'ring-like' nitrogens. This is confirmed from XRD.

LANL: Time-resolved XRD measurements of Zr α - ω phase transformation



Controlled-Continuous Compression

- Improved measurement of structural phase "boundary"
- Shift in phase boundary as a function of compression rate
- Increased efficiency in obtaining P-V data

Pressure-Jump Experiments

- Pressure increased in <0.1 s
- Time--resolved data collected at constant P
- Information on transition kinetics, metastable phases, etc.

Results indicate a sluggish transition, and in some case full conversion to ω is not observed even after 10+ min

3. SCIENCE

Nenad Velisavljevic

Northwestern-HPCAT-LANL

CDAC

[M. Jacobsen and N. Velisavljevic, *J. Appl. Phys.* 118, 025902 (2015); N. Velisvljevic et al., *Mat. Res. Exp.* 1, 035044 (2014).]

LLNL: Sm valence in SmB₆ under pressure

3. SCIENCE

2.0

2D RXES

15

0

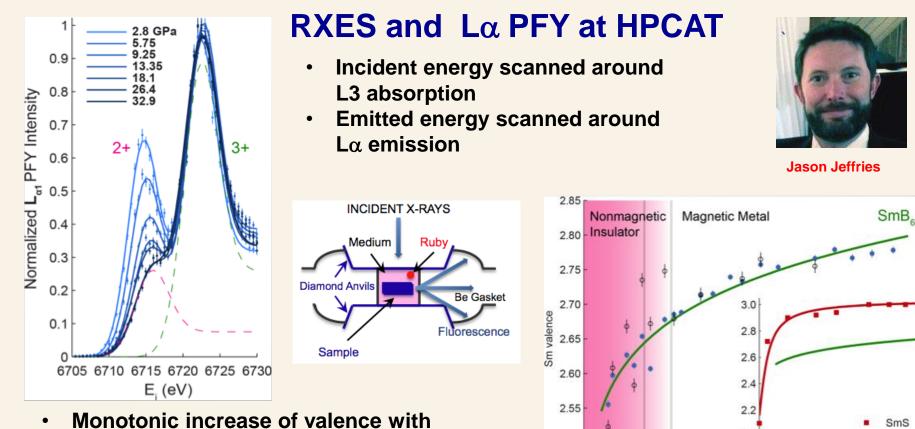
20

P (GPa)

5

25

10


30

15

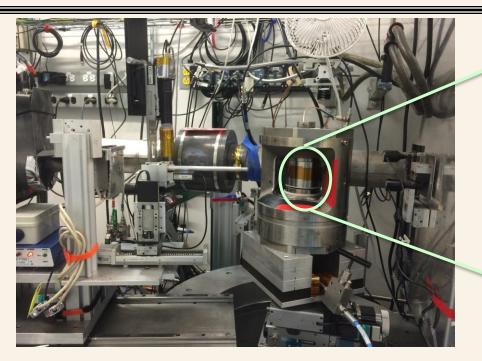
35

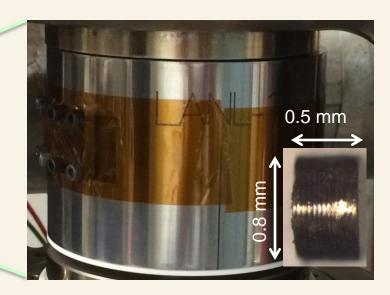
20

40

2.50

2.45


5


LLNL-HPCAT

10

- Monotonic increase of valence with pressure
- PFY and RXES show comparable trends
- Contrasts with SmS (insulator-metal and valence change at ~5 GPa)
- Valence insensitive to gap closure and onset of magnetism near 10 GPa

SNL-LANL: New device for multiple simultaneous measurements at high *P* **and** *T*

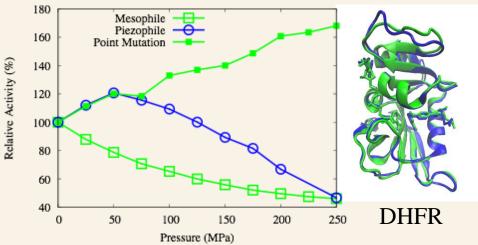
Approved Triple Containment Vessel

[M. Jacobsen and N. Velisavljevic, Rev. Sci.

Long-term collaboration with SNL and LANL Instrum. 86, 113904 (2016)]

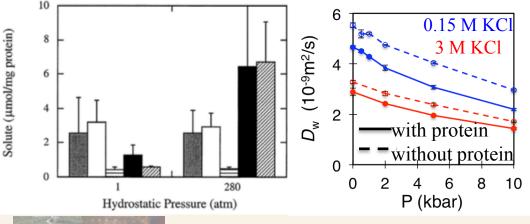
- First radioactive material experiments in 'PE' cell at APS
- Supports diffraction, radiography, ultrasonic, thermal, electrical measurements
- Thermally and electrically insulated for high P-T exps
- Feasibility studies on Zr, ongoing work on depleted uranium
- Beam time provided by CDAC, then supplemented by Tri-Lab

LANL-SNL-Northestern-HPCAT


Nenad Velisavljevic, Dan Dolan, and Chris Seagle

Biomolecules under pressure: computational extreme biophysics

3. SCIENCE


Biophysics of a protein

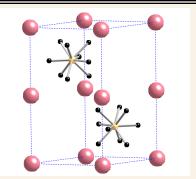
How do intrinsic protein structure and fluctuation couple with intracellular solution properties to yield functioning proteins at high P?

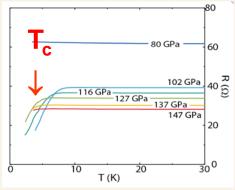
• Very different enzymatic activity for proteins with highly similar structure. (Ohmae et al. in *BBA* 2012 and *BBA* 2013)

Chemical physics of the solution

Toshiko Ichiye

Jocelyn Rodgers


- Piezolytes. Different solutes accumulate in cells at high pressures (Bartlett et al. in *Extremophiles* 2002) Why?
- Preliminary simulations imply strong effects of pressure and solutes on solution viscosity.


Georgetown-Carnegie

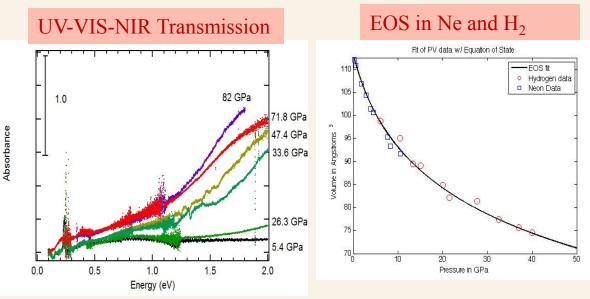
Characterization of BaReH₉ superconductor ^{3. SCIENCE}

[Markapoulos et. al., *JACS*, 132, 748 (2010)]

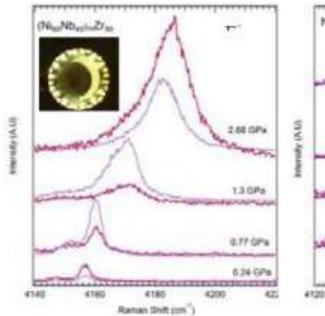
[Muramatsu, et al., *J. Phys. Chem.* 119, 18007-18013 (2015)]

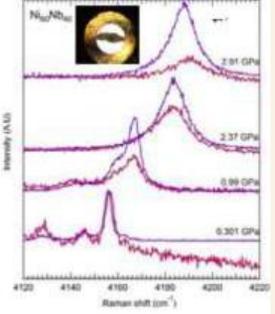
Caltech-BNL-HPCAT-Carnegie

Eugene Vinitsky



M. Somayazulu

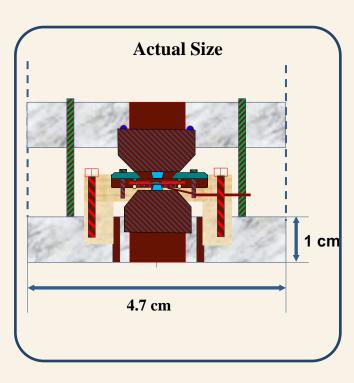

Disorder in Re-H bonds under pressure causes formation of a 'poor' semi-metal that slowly transforms to a metal under annealing paralleling other hydride superconductors.



We have successfully synthesized and characterized $BaReH_9$, Na_2ReH_9 , Li_2ReH_9 and their deuterides and have conducted extensive XRD, Raman, Synchrotron FTIR and UV-VIS measurements on $BaReH_9$ [Vinitsky et al., *in preparation*]

Ni-Nb-Zr alloy gas permeation membrane ribbons at extreme pressures

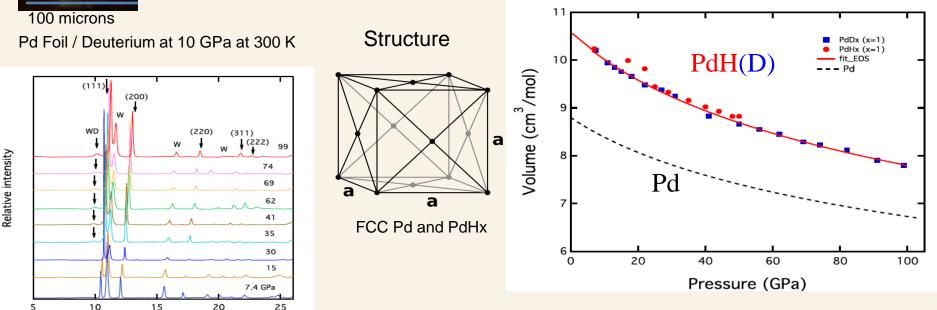
Raman spectra of $(Ni_{60}Nb_{40})_{30}Zr_{30}$ and $Ni_{60}Nb_{40}$ in H₂



Suchismita Sarker Dhanesh Chandra

M. Somayazulu

Modifying DAC for gas diffusion studies – SSAP Collaboration with UNR


3. SCIENCE

UNR-Carnegie

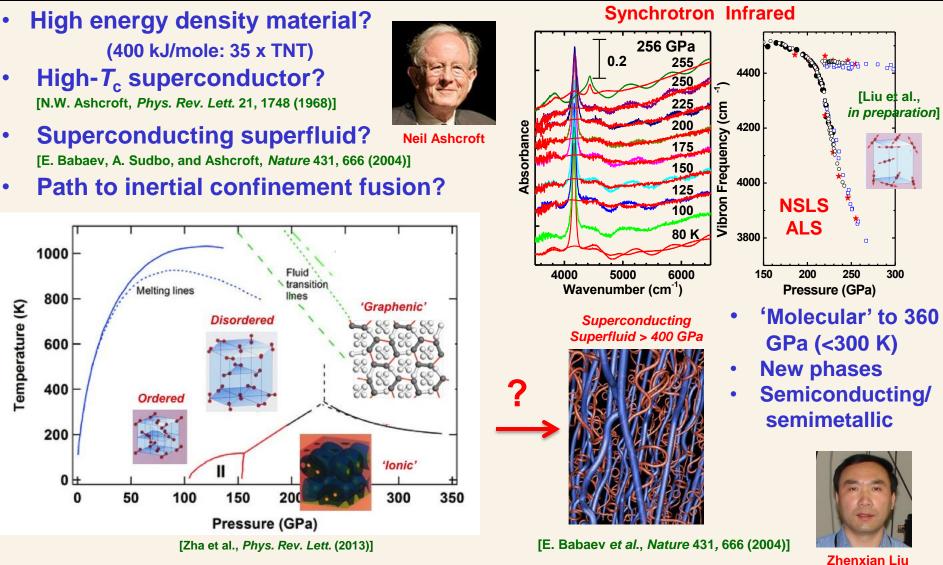
Synthesis and compression of PdH_x and PdD_x to megabar pressures

- High-pressure behavior of PdH(D), a known superconductor?
- PdH_x where x > 1 is predicted to have a much higher T_c .
- Can we create PdH_x or PdD_x where x > 1 under pressure ?

Diffraction patterns of PdD_x show that PdD persists up to 100 GPa

2theta (deg)

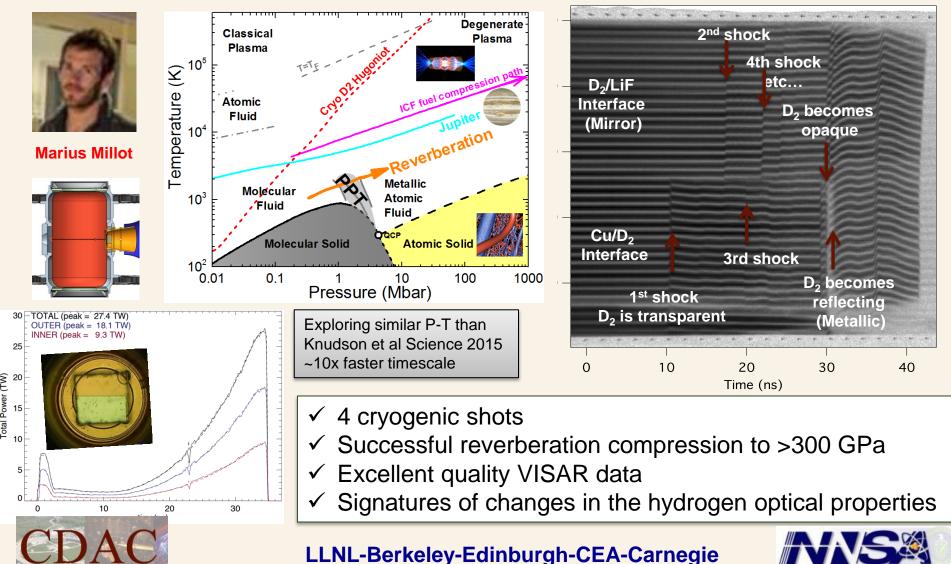
[Ahart et al., in progress].

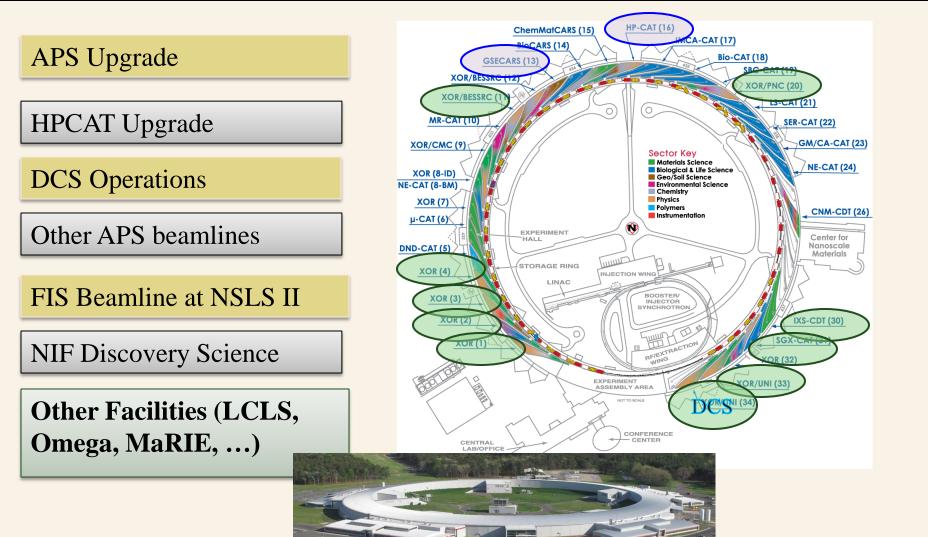

Keenan Brownsberger Muhtar Ahart Whitworth-Carnegie

- Synthesis of PdD_x and PdH_x with x=1
- No structural transitions o bserved up to 100 GPa

3. SCIENCE

Continued studies of dense hydrogen


BNL-LBNL-Cornell-Carnegie


3. SCIENCE

CDAC supports NIF Discovery Science 3. SCIENCE experiments to explore the higher *P-T* behavior

Metallization of fluid hydrogen near 2 g/cc

Facilities developments provide 4. OUTLOOK new opportunities for extreme conditions science

CONCLUSIONS AND OUTLOOK

1. Education and Training

- Diverse student program with a large group of university partners
- Continued placement of personnel in NNSA labs

2. Science Program

- Continued growth in number of high-profile publications
- Novel phenomena over a broad range of extreme conditions
- New opportunities for materials dynamics under extremes
- Opportunities at APS for the NNSA labs

3. Technique Development

- Continued technique developments to support NNSA labs
- New x-ray techniques (imaging, time-resolved, static/dynamic)
- Need to take advantage of APS upgrade
- Opportunities for coordination across DOE facilities