

CAPITAL / DOE ALLIANCE CENTER: A Center of Excellence for High Pressure Science and Technology

Russell J. Hemley

The George Washington University School of Engineering and Applied Science Washington, DC 20052

SSAP Symposium, April 12-13, 2017

Stewardship Science Academic Alliances Program

OUTLINE

1. Overview

MOTIVATION, CENTER STRUCTURE, PERSONNEL

- 2. Training EDUCATION, OUTREACH RESEARCH TRAINING
- 3. Selected Science

STUDENT AND NNSA LAB PROJECTS

4. Outlook OPPORTUNITIES

EXTREME ENVIRONMENTS IN THE COSMOS

Energetic photon/particle flux Chemical extremes Electromagnetic extremes Pressures and temperatures

PRESSURE AS AN EXTREME ENVIRONMENT

Hydrogen gas in intergalactic space 10⁻³² atm

Center of Jupiter -8 x 10⁷ atm

Center of Neutron Star -10²⁸ atm

Center of Earth 3.6×10^6 atm.

10³ atm \approx kbar 10⁶ atm \approx Mbar 10 kbar = 1 GPa 1 Mbar = 100 GPa

Compressing Atoms and Molecules

>100's GPa (to ~TPa) ~ eV energies valence electrons

>100's Mbars (1 Gbar) ~ keV energies core electrons

New tools have opened a new world on 1. OVERVIEW materials behavior under extreme *P-T* conditions

Center Goals

Mission

Develop techniques and training to examine the full complement of high *P-T* materials problems essential for stewardship science

Fiscal Year 2016 Stockpile Stewardship and Management Plan

Report to Congress March 2015

> National Nuclear Security Administration United States Department of Energy Washington, DC 20585

Center Goals

Mission

Develop techniques and training to examine the full complement of high *P-T* materials problems essential for stewardship science

> Train the next generation

Components of the Center

Academic Partners

CALTECH (Fultz) GEORGETOWN (Ichiye) **MIGHIGAN STATE (Dorfman) NORTHWESTERN** (Jacobsen) UNIV. ALABAMA – BIRMINGHAM (Vohra) **UNIV. at BUFFALO (Zurek)** UNIV. CALIF. – BERKELEY (Wenk & Jeanloz) **UNIV. CHICAGO (Heinz)** UNIV. HAWAI'I (Dera) **UNIV. ILLINOIS (DIott) UNIV. TENNESSEE (Lang)** UNIV. UTAH (Miyagi) WASHINGTON UNIV. (Schilling) WASHINGTON STATE UNIV. (Yoo)

Academic Collaborators FACILITY USERS

NNSA Laboratory Partners

ALL HIGH *P-T*GROUPS AT LLNL, LANL, SNL; STEERING/ADVISORY COMMITTEE MEMBERS

CDAC manages and coordinates 1. OVERVIEW activities at various facilities for high *P-T* research

GEORGE WASHINGTON UNIVERSITY

CDAC DC facilities

High P-T technology Spectroscopy labs Diffraction and microanalysis Computational resources CVD diamond/materials growth Sample preparation CDAC Headquarters

Steve Gramsch Coordinator/ Research Scientist

Morgan Phillips Administrator

Ivan Naumov

Theory and

Computation

Maddury Somayazulu Senior Lab Manager/ General high pressure

Chang-sheng Zha Hydrogen/ Molecular Systems

Kadek Hemawan CVD, Synthesis

Muhtar Ahart Ferroelectrics, Polymeric Materials

- Manage facilities
- Student mentoring
- Visitor training
- Technique development

CDAC manages and coordinates 1. OVERVIEW activities at major facilities for high *P-T* research

- High *P-T* synchrotron IR beamline at BNL (NSLS-U2A)
- Major component of CDAC
- Academic and NNSA Lab users (e.g., LANL, SNL, LLNL)

NSLS-II

Zhenxian Liu

- Frontier Infrared
 Spectroscopy (FIS)
 beamline to be
 completed in 2017
- Improved perform. (stability, far-IR)
- New opportunities for NNSA Labs and SSAAP

CDAC facilitates high *P-T* experiments at HPCAT at APS

 HPCAT (Sector 16) launched in 1998

Dedicated high-pressure facility

- Physics, chemistry, materials
- Advanced techniques
- Programmatic work (NNSA Labs)
- Training and education
 - More than 60% users are students and post-docs
- Enhanced capabilities
- 2012 Trilab (LLNL, LANL, SNL)
- Upgrades of APS and HPCAT

Guoyin Shen HPCAT Director

- 9 hutches
- 4 independently operating stations
- support laboratories

Operations 100% Funded by DOE/NNSA

CDAC supports and promotes research activities at other major DOE facilities

 Technique development/support for NNSA Lab facilities

1. Hydrogen 'PPT' Fluid Transition

1. OVERVIEW

- 2. Fe Melting 2 TPa in 'habitable' exoplanets
- 3. Hydrogen near melting to TPa pressures

Neutron diffraction to 100 GPa [Boehler et al., High Pres. Res. (2014)]

CDAC HIGHLIGHTS 2016-2017:

2. TRAINING

Education, training and outreach

- Supported 17 PhD students 5 PhDs awarded
- 56 total PhDs awarded with CDAC support
- 4 early career scientists join DOE/NNSA labs/HQ
 - Max Murialdo (Caltech) to LLNL
 - Will Shaw (Illinois) to LLNL -
 - Joshua Townsend (Northwestern) to SNL
 - Andrew Shamp (Buffalo) to NNSA HQ
- CDAC/HPCAT/Lab collaborations
 - 580+ collaborators/coauthors from 150+ institutions

Presentations at major national meetings

- AGU - Fall 2016: 29 abstracts; APS - March 2017: 31 abstracts

Student and Faculty Awards

- Yi Hu (Univ. Hawai'i Bullard Fellowship)
- Sakun Duwal (NASA; WSU Golding Scholarship; WSU Seminar Award)
- Will Bassett (APS GSCCM Early Career Award) -
- Erin Nissen (NNSA Fellowship) -
- Lowell Miyagi (NSF CAREER grant) -
- Brent Fultz (Neutron Scattering Society of America Fellow)
- Russell Hemley (Marker Lecturer, PSU; Sack Lecturer, Cornell; S&T Lecturer, SNL)

Max Murialdo (LLNL)

Andrew Shamp (NNSA HQ)

Will Shaw

(LLNL)

2. TRAINING

Educational Enrichment at NNSA Labs

Jane Herriman California Institute of Technology

LLNL

CCMS Summer Institute Summer 2016-Present E. Schwegler X. Andrade, E. Draeger Ehrenfest Molecular Dynamics With the Qb@ll Code

Phonon thermodynamics of GaN and related materials

wurtzite

zincblende

Andrew Shamp University at Buffalo

LLNL Quantum Simulations Summer 2014

NNSA Fellow (June 2017) Eloisa Zepeda-Alarcón UC – Berkeley

LANL

Materials Science in Radiation and Dynamics Extremes Summer 2014

LLNL Postdoc (Jan. 2018)

John Lazarz Northwestern University

LANL - Shock and Detonation Physics Fall 2014 + September 2015 –

December 2016

LANL Postdoc (Jan. 2018)

A broad range of fundamental problems in high *P-T* science is being investigated

- STRUCTURES AND PHASE RELATIONS
- EQUATIONS OF STATE
- ELASTICITY, RHEOLOGY, STRENGTH
- ELECTRON AND PHONON DYNAMICS
- TRANSPORT PROPERTIES
- EXTREME CONDITIONS CHEMISTRY

DIVERSE MATERIALS

High Z metals

3. SCIENCE

- Molecular
- **Systems**
- Low-Z gases
- High explosives
- Polymers
- Composites

2016-2017: 199 Publications (including in press) - 27 Student papers (16 Student First Author Papers)

Since 2003: 1790+ Publications

(250+ Student Publications)

- 96 Phys. Rev. Lett., 87 Nature, 25 Science, 83 PN

CDAC HIGHLIGHTS 2015-2016:

Student / Postdoc Presentations

Muhtar Ahart (Carnegie) - Sound velocity and energy dispersive x-ray diffraction measurements of B4C and Si-doped B4C at high P-T conditions 22 posters William Bassett (Illinois) - Shock initiation of explosives under the microscope **Tiange Bi** (**Buffalo**) - Superconducting phases of phosphorus hydride under pressure: Stabilization at this via mobile molecular hydrogen meeting Benjamin Brugman (Michigan State) - Strength of solid krypton and xenon to 94 GPa Bethany Chidester (Chicago) - Phase behavior and equations of state of the actinide oxides Samantha Clark (Northwestern) - Creating binary CuBi compounds at high pressure **Samantha Couper (Utah)** - High temperature deformation and slip systems in NaNiF₃ perovskite and post-perovskite **Sakun Duwal (Washington State)** - *Phase diagram and photochemistry of* H_2S *and* H_2^+S *under pressure* **Zachary Geballe** (Carnegie) - Fast electrical heating experiments on PdHx and H₂O at high pressures Kadek Hemawan (Carnegie) - Encapsulated electrodes on diamond anvils for high pressure experiments Jane Herriman (Carnegie) - Thermodynamic properties of GaN: evolution with temperature and pressure in the wurtzite and zincblende phases John Lazarz (Northwestern) - Equation of State of Majoritic Garnet up to 25 GPa **Feng Lin (Utah)** - Modeling lattice strain and texture evolution in post-perovskite type minerals: implications for slip systems activity Samuel Moore (UAB) - Two-stage nanocrystalline diamond micro-anvils for studies on materials under extreme conditions Erin Nissen (Illinois) - Dynamics of shock compressed water **Raul Palomares** (Tennessee) - Characterizing the effects of dense electronic excitation in CeO₂ and ThO₂ Andrew Shamp (Buffalo) - Theoretical studies of the principle Hugoniot and solid state properties of boron carbide in extreme conditions Hannah Shelton (Hawai'i) - Noble gas transport by amphiboles: In situ structural analysis of neon within ferroactinolite Jing Song (Washington University) - Magnetic ordering at anomalously high temperatures in Nd and Dy under extreme pressure James Walsh (Northwestern) - High-pressure synthesis of unprecedented intermetallic compounds **Fred Yang (Caltech)** - Magnon-phonon interaction in Pd₃Fe Eloisa Zepeda-Alarcon (Berkeley) - Texture development in two-phase mineral aggregates: Modeling plastic deformation with finite element methods

- 1. Structures and EOS
- 2. New Materials
- 3. High Tc Superconductors
- 4. Dense Hydrogen

P-V-T EOS of B₄C from static and shock compression

Andrew Shamp

Eva Zurek

Muhtar Ahart

CBC Chain Polar Sites Equatorial Sites

3. SCIENCE

Buffalo-HPCAT-LLNL-Carnegie

High P-T sound velocity and structure of B₄C and Si-doped B₄C

Boron Carbide: high melting point, high stability, outstanding hardness, low density, resistance to wear; and results in a range of applications from neutron control rods in fast breeder reactors, to light body armor, etc. B₄C 2% Si Sound Speed

Rhombohedral R-3m

Ultrasonic spectrum at 3 GPa and 1073 K. Lower panel shows the analyzed travel time for P-wave.

Muhtar Ahart

Pressure dependencies of velocities for Si 2% doped B4C at various temperatures

3. SCIENCE

Shear and Compression Sound Speed vs. Pressure 10 -Oil Pressure Si doping to B₄C to Sound Speed / km/s 2000 prevent the 2500 • 3300 • 4000 pressure-induced 5000 6000 amorphization 30 Pressure / GPa

Synchrotron IR studies of energetic materials at high *P-T* conditions

Detailing the complex phase diagram of FOX 7 ($C_2N_4O_4H_4$), an insensitive high power explosive using externally heated DAC combined with synchrotron IR techniques. This study will stimulate additional work on insensitive high explosives.

- In-situ techniques for direct phase determination, IR measurements along with molecular dynamics simulations, were employed to explore the nature of the unusual phase boundaries.
- Resolving multiple solid-solid transitions and determining onsets of decomposition is crucial for further improving our understanding of the behavior of energetic materials.

[M. Bishop, N Velisavljevic, R Chellappa, Y Vohra, *J. Phys. Chem. A* (2015); M Bishop, R Chellappa, Z Liu, D Preston, M. Sandstrom, D Dattelbaum, Y Vohra, N Velisavljevic, *J Phys Chem* (2014)]

UAB-Carnegie-LANL

High pressure yields new materials

Discovery of FeBi₂

- FeBi₂: First chemical bond between Fe and Bi
- 30 GPa / 1800 K
- [J. Walsh, S. Clarke et al. ACS Cent. Sci. (2016)]

3. SCIENCE

James Walsh, Samantha Clarke (Northwestern)

Ultrahard Stitching in C₂-BN Composite

- Nanotwinned composite of diamond and cBN
- B-C-N solid solution instead of grain boundaries
- ultrahard, Hv = 85 GPa
- p-type seminconductor
- high thermal stability (T_{OX} ~1200K)

[X. Liu et al. Sci. Rep (2016)]

Xioabing Liu, Steve Jacobsen)Northwestern)

Synthesis of novel compounds: xenon nitride at high *P-T* conditions

3. SCIENCE

- Mixtures of Xe and N₂ compressed in a DAC form a cubic and bct, vdW compound $Xe(N_2)_2$
- \succ Xe(N₂)₂ becomes opaque and black at pressures above 120 GPa where it couples to a YLF laser.
- Pulsed and CW heating yields a monoclinic phase identified as similar to the theoretically predicted Xe₃N₄
- Raman, FTIR spectroscopy indicates presence of linear N₄ units rather than ring-like N₆ units

M. Somayazulu

Yue Mena

[M. Somayazulu et al., in preparation]

Xe(N₂) 12 GPa

Carnegie-GWU-LANL-HPCAT

Synthesis and compression of PdH_x and PdD_y to megabar pressures

- High-pressure behavior of PdH(D), a known superconductor?
- PdH_{x} where x > 1 is predicted to have a much higher T_c.
- Can we create PdH_x or PdD_x where x > 1 under pressure ?

Diffraction patterns of PdD_x show th at PdD persists up to 100 GPa

2theta (deg)

[Ahart et al., in preparation]

Keenan Brownsberger Whitworth-Carnegie

Muhtar Ahart

- Synthesis of PdD, and Pd H_x with x=1
- No structural transitions obs erved up to 100 GPa

High-Pressure Superconductivity

SUPERCONDUCTING ELEMENTS

23 produced under pressure; e.g., O, S, B, Fe, Li, Ca

- Still higher T_c?
- > Other 'superhydrides'?
- Recoverable phases?

[Drozdov et al., *Nature* (2015)]

 $T_c = 203 K$

(200 GPa)

 $HgBa_2Ca_2Cu_3O_{8+\delta}$

T_c = 164 K (30 GPa)

[Gao et al., (1994); Lokshin et al. (2002)]

Transformations in H₂S

[S. Duwal and C. S. Yoo. J. Phys. Chem C (2016)]

Synthesis of superconducting hydrides megabar pressures

Laser heating set up

- Laser heating in presence of hydrogen is detrimental for diamond anvils and causes failure
- Pulsed laser heating was adapted for in-situ synthesis of higher hydrides as superconductive material
- Wang et al. (2012) predict that sodalite CaH_6 with $T_c \sim 235$ K

Raman spectra of laser heated Ca+H₂ at ~120 GPa '*' Raman modes for CaH₄ [A. K. Mishra *et al.*, *in press*]

Carnegie-GWU-Buffalo-HPCAT

Tetragonal CaH₄

3. SCIENCE

IR absorbance of the band gap

Ajay K Mishra 🦳 Yue Meng

Eva Zurek

Predicted high *T_c* superconductivity in 3. SCIENCE compressed lanthanum and yttrium hydrides

- Is it possible to predict a room temperature superconductor?
 - More hydrogen content, the *T_c* is higher
 - More valence electrons, the more hydrogen content

Carnegie-Cornell-GWU

Encapsulated Electrodes on Diamond Anvils for High Pressure Experiments

3. sputtered

- 4. CVD growth
- Electrical resistance measurements of high-pressure hydrogen or metallic polyhydrides using diamond designer anvils has potential to reveal new superconductors with transition temperatures above 200 K.
- The encapsulation is achieved by specific pocket design holder, nitrogen addition, and substrate temperature of 1050 ° C.

Carnegie

Effect of N₂ addition in plasma chemistry

[K. Hemawan et al., in progress].

Zack Geballe

Kadek Hemawan

Hydrogen P-T Phase Diagram

Topological surface states in dense hydrogen and other low-Z elements

- 2D or quasi-2D systems can be potentially good superconductors.
- We show that metallic surface states can appear in insulating phases of compressed H, Li, and Na due to topological reasons.

Cmca-12 hydrogen: metallic SSs cover the whole 2D Brillouin zone (1)

(b)

(a) Band structure of a 4-unit-cell thick film of a Cmca-12 hydrogen at 300 GPa.
The surface bands are indicated by thick black curves crossing the Fermi level.
(b) Isosurfaces (±1.75) of two Bloch functions

Elemental high-pressure electride Na-hP4: 2D electron gas on polar surfaces (2)

(a) Slab model for polar (0001) hP4-Na surface.
(b) The corresponding 2D band structure. Electrons
(0.5 e/per 2D cell) move from one surface to the opposite surface to neutralize the "polarization catastrophe". As a result, a 2D electron gas appears similar to that of the renown SrTiO3/LaAlO3 interface.

[I. I. Naumov and R. J. Hemley, *Phys. Rev. Lett.* (2016)] [I. I. Naumov and R. J. Hemley, *submitted*]

Topological surface states in dense hydrogen and other low-Z elements

3. SCIENCE

Externally heated diamond anvil cell techniques in with conjunction in situ Raman measurements at each P-T point provide melting line data to 300 GPa when lattice mode disappeared. Vibrons changing with P-T indicate two transition points along the melting line. More details for high *P-T* phase diagram are in preparation.

Pressure effects on energy landscapes of complex polymers

Quasiharmonic analysis of protein energy landscapes

FUTURE OUTLOOK

- How can we better understand and predict emergent complexity in highly compressed dense matter?
- What new physics may emerge in cold to warm dense matter at TPa pressures?
- Can we accurately determine fundamental thermodynamics at multimegabar P-T?
- How do defects, grain boundaries, and interfaces respond to high P-T-t conditions?

National Nuclear Security Administration United States Department of Energy Washington, DC 20585

- How can we better measure time-dependent transformations, and bridge the gap between static and dynamic compression?
- Can we determine constitutive properties such as strength, plasticity, and rheology at ultrahigh (TPa) P-T conditions?
- Can we expand the synthetic chemistry frontier to very high P-T conditions to produce new optimized materials?

CONCLUSIONS

1. Education and Training

- Diverse student program with a large group of university partners
- Continued placement of personnel in NNSA labs

2. Science Program

- Continued growth in number of high-profile publications
- Novel phenomena over a broad range of extreme conditions
- New opportunities for materials dynamics under extremes
- Opportunities at APS for the NNSA labs

3. Technique Development

- Continued technique developments to support NNSA labs
- New x-ray techniques (imaging, time-resolved, static/dynamic)
- The APS upgrade provides new opportunities
- Opportunities for coordination across DOE facilities

BACKUP SLIDES

New developments in CVD diamond

1. Growing diamond at atmospheric pressure

- New micro-wave plasma CVD methods
- Increasing pressure enhance diamond growth rates
- 2. Metastable growth of other materials
 - Other materials in kinetically stabilized states such as Si
- 3. N-V centers in nanodiamonds

Derek Keefer (Penn State)

Todd Zapata (TAMU)

Huiyang Gou

Kadek Hemawan

PSU-TAMU-Carnegie

Single-crystal diamond grown at <200 torr [K. Hemawan *et al.*, JVSTA (2015)]

Polycrystalline diamond produced by atmospheric pressure CVD

[K. Hemawan et al., Appl. Phys. Lett. (2015)]

New developments in CVD diamond

1. Growing nanodiamond at HPHT conditions

- New seeding technique
- Allows direct placement of color-centers
- 2. Metastable growth of other materials
 - Other materials in kinetically stabilized states such as Si

3. N-V centers in nanodiamonds

Derek Keefer (Penn State)

Todd Zapata (TAMU)

Huiyang Gou

Kadek Hemawan

PSU-TAMU-Carnegie

Organic nanodiamonds [T. Zapata *et al.*, arXiv:1702.06854]

Polycrystalline diamond produced by atmospheric pressure CVD

[K. Hemawan et al., Appl. Phys. Lett. (2015)]

A Generalized Law of Corresponding States 3. SCIENCE for Nonideal Gas Physisorption

Adsorbed-Phase Heat Capacity

Zeolite-Templated Carbon has anomalous thermodynamics due to cooperative interactions with methane, ethane and krypton

[M. Murialdo, et al., J. Phys. Chem. C (2016)]

Max Murialdo (Caltech)

Gas Uptake Normalized by Molecular Volume

At corresponding conditions, adsorption data aligns for multiple gases at same reduced T, even with anomalous thermodynamics of adsorption.

Probing detonation-strength shocks in the **3. SCIENCE** plastic-bonded explosive XTX8003

2017 GSCCM Early Career Award Winner

Pulsed electrical heating in diamond cells: 4. TECHNIQUES application to synthesis of PdH_x

Carnegie-George Washington

4. TECHNIQUES

Modulation calorimetry in diamond cells: application to H₂O

- Calorimetry with thin-film heaters surrounded by insulating sample → high signal:noise
- Thermal property changes across ice VII-VIII, VI-water boundaries up to 9 GPa

Carnegie

Photochemical reaction of H₂+S forming (H₂S)₂H₂

H₂ + S mixture with increasing pressure

[S. Duwal and C. S. Yoo, submitted]

A Generalized Law of Corresponding States 3. SCIENCE for Nonideal Gas Physisorption

Adsorbed-Phase Heat Capacity

Zeolite-Templated Carbon has anomalous thermodynamics due to cooperative interactions with methane, ethane and krypton

[M. Murialdo, et al., J. Phys. Chem. C (2016)]

Max Murialdo (Caltech)

Gas Uptake Normalized by Molecular Volume

At corresponding conditions, adsorption data aligns for multiple gases at same reduced T, even with anomalous thermodynamics of adsorption.

Actinide materials under extreme conditions

- Monitoring CeO₂ and ThO₂ bond lengths as a function of ion fluence (ions/cm²)
- Electronic structure and redox behavior influence resultant defect structure
- CeO₂: Ce³⁺ and peroxide formation
- ThO₂: distortion of local polyhedra

[R. I. Palomares, et al., J. Mater. Chem. A, submitted]

Modulation calorimetry in diamond cells: 3. SCIENCE designs and prototypes

- Motivated by C_p, L measurements in laser-shock
- Numerical simulations of heat flow in diamond cell
- Design of Joule-heating experiment
- Testing of Fe, Pt, Ni, Pt-coated glass prototypes

Zachary Geballe

G. W. Collins

Berkeley-Carnegie-LLNL

0.5 mm

Magnon-Phonon Interaction in Pd₃Fe

Discrepancy between quasiharmonic approximation and experimental result with temperature

[F. C. Yang, et al. Phys. Rev. Lett. (2016)]

- Nuclear resonant spectroscopy at HPCAT: NRIXS, NFS
 - Shift in phonon energy near Curie Fred Yang temperature – indicates magnon- (Caltech) phonon interaction

Rare gas solids at high pressure

- Uniaxial differential stress determined by lattice strain analysis in both Xe and Pt
- Strength increases with Z for rare gas solids

Ben Brugman

Michigan State

Actinide oxides at high P-T

3000

2500

2000

1500

1000

500

0

20

10

🔺 🕬 💬 🗡

30

40

Pressure (GPa)

Temperature (K)

Bethany Chidester (Chicago)

Flourite-type

Cotunnite-type

Fluorite-type to cotunnite-type transitions in both ThO₂ and UO₂ at moderate pressures

60

70

Ð

50

• Tetragonal and monoclinic Structures observed in UO₂ at Higher *P* and *T*

[B. Chidester et al., in preparation (2016)]

• Interest in ThO₂ and UO₂ phases arises from possible appearance in metal-silicate partitioning experiments

